FINSLERIAN HYPERSURFACES AND RANDERS CONFORMAL CHANGE OF A FINSLER METRIC
نویسندگان
چکیده
منابع مشابه
Conformal change of special Finsler spaces
The present paper is a continuation of the foregoing paper [16]. The main aim is to establish an intrinsic investigation of the conformal change of the most important special Finsler spaces. Necessary and sufficient conditions for such special Finsler manifolds to be invariant under a conformal change are obtained. Moreover, the conformal change of Chern and Hashiguchi connections, as well as t...
متن کاملOn Finslerian Hypersurfaces Given by β-Changes
In 1984 C.Shibata has dealt with a change of Finsler metric which is called a β-change of metric [12]. For a β-change of Finsler metric, the differential oneform β play very important roles. In 1985 M.Matsumoto studied the theory of Finslerian hypersurfaces [6]. In there various types of Finslerian hypersurfaces are treated and they are called a hyperplane of the 1st kind, a hyperplane of the 2...
متن کاملStationary Metrics and Optical Zermelo-Randers-Finsler Geometry
We consider a triality between the Zermelo navigation problem, the geodesic flow on a Finslerian geometry of Randers type, and spacetimes in one dimension higher admitting a timelike conformal Killing vector field. From the latter viewpoint, the data of the Zermelo problem are encoded in a (conformally) Painlevé-Gullstrand form of the spacetime metric, whereas the data of the Randers problem ar...
متن کاملλ-Projectively Related Finsler Metrics and Finslerian Projective Invariants
In this paper, by using the concept of spherically symmetric metric, we defne the notion of λ-projectively related metrics as an extension of projectively related metrics. We construct some non-trivial examples of λ-projectively related metrics. Let F and G be two λ-projectively related metrics on a manifold M. We find the relation between the geodesics of F and G and prove that any geodesic of...
متن کاملFe b 20 06 Conformal β - change in Finsler spaces
We investigate what we call a conformal β-change in Finsler spaces, namely L(x, y) → * L(x, y) = e σ(x) L(x, y) + β(x, y) where σ is a function of x only and β(x, y) is a given 1-form. This change generalizes various types of changes: conformal changes, Randers changes and β-changes. Under this change, we obtain the relationships between some tensors associated with (M, L) and the corresponding...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Pure and Apllied Mathematics
سال: 2013
ISSN: 1311-8080,1314-3395
DOI: 10.12732/ijpam.v87i5.3